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It is shown that there exist undamped solutions for perturbations of finite ampli- 
tude of plane Poiseuille flow, which are periodic in the direction of the axis of 
the channel. The shift in the ‘neutral curve’ as a function of the amplitude A* 
of the disturbance is shown in figure 2. The solution is obtained by a perturbation 
method in which the eigenfunctions and the eigenvalue c are expanded in power 
series of the amplitude A ,  as shown in (14), (15), (16) and (17). Near the neutral 
curve for a finite amplitude disturbance, the curvature of the mean flow shows 
a tendency to become negative (figure 5). 

Analytical formulation 

We wish to determine whether the Navier-Stokes equation, 

(1) 
av2$ a$av2$ a$av2$ i 
at a~ ax ax ay - R - V4$, 

for the stream function $ in two-dimensional flow, has solutions which are 
periodic of the form, 

m 

with c real. 
This solution represents a laminar flow ZC derivable from ($o+fo) ,  on which is 

superimposed a disturbance which is periodic in x of wavelength (27r/a), but is 
of general shape, and which propagates in the x direction with phase-velocity c. 
The reality of c expresses the condition of ‘neutral’ equilibrium. 

In  order that + shall be real we must have 

f-,(Y) = fn(YL (3) 

where the bar denotes the complex conjugate. For an earlier discussion of this 
problem see Meksyn & Stuart (1951). 

We shalI consider the case where Po represents the plane Poiseuille flow, 

+o = y-’ 3Y3 (-1 < Y .c 11, (4) 



630 C .  L. Pekeris and B.  Xhkoller 

For weak disturbances, when only fi need be considered, we have the Orr- 
Sommerfeld problem for the perturbation of plane Poiseuille flow. For dis- 
turbances of finite amplitude, fo represents the modification of the mean flow 
caused by the disturbance. 

The boundary conditions of the vanishing of both velocity components at  the 
walls (y = 1 )  require that 

f n ( 1 )  = f n ( - 1 )  = f n ( - 1 )  = 0. (6) 

Substitution of ( 2 )  in (1) yields 
m - 

gn - a2n2gn + inaR[( 1 - y2 - C ) g n  + 2fnI = 

where gn is the vorticity amplitude given by 

2 [(n - m)fn -mgm-mfn-mgmI ,  

( 7 )  

(8) 

m = - m  

g n = f  n -a2 n 2 fn. 

In  the linearized case, when the quadratic terms on the right-hand side of (7) are 
neglected, this equation reduces to the Orr-Sommerfeld equation. Using (3), 
(7) can be transformed into (see Eckhaus 1965, p. 98; Watson 1960) 

gn-a2n2g,+inolR[(1 - y 2 - ~ + ~ o ) g n +  (2-f,,)fn] = iaRK,, 

The equation for fo reduces to 

where 4 denotes the imaginary part. 
Equation (10) can be integrated into 

It can be shown (Stuart 1960, Watson 1960) that putting the constant of integra- 
tion in (1 1 )  equal to zero is equivalent to making the assumption that the mean 
pressure-gradient remains unchanged by the perturbation. This would be 
realized in practice if the mean pressure is maintained constant both at the intake 
of the channel and at  the outflow. A further integration of ( 1 1 )  leads to 

m 

k =  1 
fo = 2aR9 2 kfkf, ,  

where now the constant of integration has been put equal to zero because f o  

is an odd function of y. 
The integral of ( 1 2 )  which satisfies the boundary condition fo( 1 )  = 0 is 
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If we truncate the series (2) a t  n = m, then (9) represents a system of m ordinary 
non-linear differential equations for thef,, withf, and y,., given by (13) and (1 1). 
Periodic solutions of finite amplitude will be demonstrated to exist if a solution 
of this system of equations can be found which satisfies the boundary conditions 
(6 )  for a real eigenvalue c, and if it can also be shown that the truncated series (2) 
has converged sufficiently well throughout the channel. 

Method of solution 
In  order to solve the non-linear system of equations (9), we expand the solution 

in a power series of a parameter h which is a measure of the magnitude of dis- 

Substitution of (14) in (9) shows that the appropriate perturbation-parameter 
to use is 

and we therefore adopt the expansions, 

(15) E = 201Rh', 

Similarly, we let 
U 

c = c Sicj. 
j = O  

Here m and 
Sommerfeld equation for Flo 

are truncation limits, and c, is the (complex) eigenvalue of the Orr- 

Ll(Fl0) = Fir - 2a2Pl0 + a4F10 + iaB[( 1 - y2 - co) (PI,  - a2Flo) + 2F10] = 0. (18) 

If, for given values of 01 and R, a value el is found which makes the imaginary 
part ci of c in (17) vanish, 

u .  

ci = gcii = 0, (19) 
j = O  

and if, furthermore, the series in (19) as well as the corresponding series in (16) 
show evidence of satisfactory convergence at  E = el,  then there exists a periodic 
undamped (neutral) solution for a finite amplitude A,. The latter is determined 
from el by (15). 

8, - a2n2G, + ianR[( 1 - y2 - c,) G, + 2Fn] 

Using (14), we write (9) in the modified form, 

= ianR[(c - c, -f0) G, +foF,] + i01R [kFkkn--k - (n - k )  2, G,-,] 

Substitution of the expansions (16) and (17) in (20) leads to a system of equations 
for the Fni 

L,(F!J = FLY - 2a2n2Fnj + ak4Fnj + ianR[( 1 -y2 - co) Gnj + 2Fnj] 

= ~ ~ ~ R [ ( c ~ - E ~ ) G , , + ~ ~ ~ + & , ~ ] + ~ o ~ R O , ,  (j = 0,1, ..., u), (21) 
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where 

Here 

i 

s=o 
Hkj = p&Fk,j-s. 

With the above definitions we have 

We note that for the case .n = 1 in (21)) 

Ll(Flj) = .8’:? - 2a2FIj + a4Flj + iaR[( 1 - y2 - co) (Plj - a2Flj) + 2Flj] 

= iaR[(cj - Ej) GI0 + T1.j + Q1j + 01j], (28) 

the operator Ll(Flj) is the Orr-Sommerfeld operator of (18)) and co is the appro- 
priate eigenvalue corresponding to the boundary conditions (6). If p1 is the solu- 
tion of the adjoint operator to L,, 

.&(pl) = piv - 2a2F+ a4p1 + iaR[( 1 - y2 - c0) (fl - a2pl) - 4y#1] = 0,  
ii 

(29) 
Pl(l) = &(l) = Pl( - 1 )  = B1( - 1) = 0)  (30) 

then we have j’ &(B&)F1dy = 0. (31) 
-1 

Applying (31) to (28)) we get 

We shall adopt a normalization for pl given by 

-1 
whereby (32) yields 

(33) 

1 

- 1  
C. 3 = Ei- (Tij+&1j+@1j)&@/ (j = 1 7  . . . 7 g ) .  (34) 

Since Tlj as defined in (23) contains cj’s only up to +, we can determine the cj 
successively from (34). 
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The orthogonality condition (32) has to be imposed in order to make a solution 
of (28 )  possible at  all. Even then, the solution of the inhomogeneous equation is 
arbitrary by a multiple of the solution of the homogeneous equation. This, 
however, does not affect the values of the c’s (Pekeris 1936). 

We have solved the system of ( 2  1) by finite differences, using a transformation 
due to Thomas (1953). Details of the method will be found in an earlier publication 
(Pekeris & Shkoller 1967).t In  the finite-difference scheme, each differential 
equation is reduced to a system of N = l/h simultaneous inhomogeneous linear 
equations for the values of Fni(kh), where h denotes the finite-difference interval. 
The system is linear because the work can be so arranged that the inhomogeneous 
part is derived from earlier solutions. 

When n > 1, the determinant An of the system of equations does not vanish 
because co is not an eigenvalue for n + 1.  The solution of the inhomogeneous 
system can then be carried out in a straightforward manner. For the case n = 1 
given in equation (28 ) ,  A, vanishes, and the solution takes on the indeterminate 
form of 010. Here the zero in the numerator is achieved by meeting the ortho- 
gonality condition (32). In  a previous case (Pekeris 1936), where an analytical 
solution was sought, this difficulty was overcome, but in our case of a numerical 
solution we have followed the following device. Equation ( 2 8 )  was solved first 
using a value of co( 1 + 8) instead of co, and then again for co( 1 - S), and the mean of 
the two solutions was adopted. Obviously we want to make 6 as small as possible, 
in order to approach the limit as 6 + 0. However, when Sis too small the solution 
becomes inaccurate because A, gets close to zero. We have found that 6 = 5 x 
is about optimal, for which the relative deviation of the two solutions from the 
mean is of the order 6. 

Since the above method is unconventional, we have checked the results by the 
following independent method. In  order to solve (28), 

Ll(Fli) = - 2a2Flj + a4Flj + iaR[( 1 - y2 - co) (plj - a2Fli) + 2F,J = iaRK,?, 

(35) 

where (36) 

we develop Flj in terms of the eigenfunctions $;I of the Orr-Sommerfeld equation, 

(37) -%($;I) = $F - 2a2& + a4& + iaR[( 1 - y2 - Ci) (& - a2$;) -I- 2&] = 0, 

In  (37), the first eigenvalue c: is identical with co of (35), and in the summation 
(38) we omit the first eigenfunction @:, which is the solution of the homogeneous 
equation (35). Substituting (38) into (35), we get 

t In equation (52) of that paper, (o1-Pl) should be (w1+P1). The numbers given in 
tables 1 and 2 are ZP, not 8. 
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Using the orthogonality condition, 

C .  L. Pekeris and B. Xhkoller 

where 6; is the solution of (29) adjoint to (37), we can solve (39) for the expa,nsion 

We have solved (35) by (38) and (41) going up to values of ,u above 50, and 
found the resulting coefficients ci in the expansion (17)) as well as the critical 
amplitude parameter A* in (44) infra, to be identical with the values obtained 
by the first method. As a further check (9) was solved directly, using the final 
vectors in the evaluation of K,. The new solutions differed little from the input 
vectors. The eigenvalue c was evaluated from 

and found to agree with the (real) input value. 

Discussion of results 
The expansion of the phase velocity c appearing in (2) into the power series (17) 

of the amplitude-parameter 6 is related to Stuart's theory (Stuart 1958, 1960; 
also Watson 1960), based on a conjecture of Landau (Landau 1944) about periodic 
disturbances of finite amplitude of plane Poiseuille flow in the vicinity of the 
neutral curve. We have discussed this problem, as formulated by Eckhaus (1965)) 
in a previous paper (Pekeris & Shkoller 1967). Indeed, it can be shown that the 
integral &a, R), defined in (34) of that paper and evaluated in table 1 and table 2, 
is a multiple of c1 in the expansion (17 )  

(43) 

We have found satisfactory numerical agreement between our values of c1 and 
the values of preferred to. Our previous analysis showed that cli, or pi, is positive 
inside the dashed curve shown in figure 1, and is negative outside it. As a result, 
the neutral curve for finite amplitudes is shifted from the neutral curve ABC 
valid for infinitesimal disturbances, t o  the curve DBF. Here the branch DB lies 
in the zone which is stable for infinitesimal disturbances, while the branch BP 
lies inside the unstable zone. Along the branch BP, a disturbance which is unstable 
for h = 0 becomes stable (or neutral) for some finite value A of the amplitude of 
the disturbance, as was conjectured by Landau (1944). It should be pointed out 
that the curve DBP in figure 1 was drawn only schematically, in that actually 
the distance CF is much smaller than AD. 

These qualitative results, which follow from the mere change of the sign of cli 
as the dashed line in figure 1 is crossed, are now confirmed quantitatively through 
our evaluation of the whole series-expansion ( 17). The results are shown in figure 2. 
Essentially, the curves in figure 2 show the regions in the a - R plane where the 
series (17) was found to converge. Convergence was manifest for e < 8. 

p = P,. + iPi = - ia2Rc1 = a2Rc,i - ia2Rc1,. 
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+ R  

FIGURE 1. Schematic illustration of the shifting of the neutral curve for a finite 
amplitude h of the disturbance of plane Poiseuille flow. 

8 

t 

+ R  

FIGURE 2. The neutral curves for k i t e  amplitude disturbances of plane Poiseuille flow. 
A* is the amplitude parameter. The dashed curve is the locus where cli in equation (17) 
vanishes. 
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The amplitude parameter A* was defined through 

Fl(0) wastakentobeequalto 1,andthevaluesofthe otherFn(0) thenfollowedfrom 
the solution of (21). A* is then the absolute value of the sum of the values off, on 
the axis of the channel. A* exceeded A generally by from 5 to 8 yo. The above 
definition of A* was adopted, in order to facilitate comparison of our results with 
those derived from another approach which we made for the case when the series 
in (2) was truncated at n = 1. Equation (9) then reduces to the non-linear eigen- 
value problem : 

fi'" - 2cc?fl + a4f1 + iaR[( 1 -y2 - c +to) (fi - a"fi) + (2 -fO)fl] = 0, (45) 

(46) 
1 

f,, = - 2 a B Y j  j',fldy, fo = 2aRYf1f1, 
II 

with fi satisfying the boundary conditions (6). Starting with 

fl = A at y = 0, (47) 

where h is initially very small, the system of (45) and (46) was iterated until a 
convergent numerical solution was obtained. The resulting ci was different from 
zero. With this solution as a start, another one was then obtained by iteration 
for a higher value of A. ci was thus explored as a function of A ,  and the value A* 
where ci vanishes (for the given values of a: and R) was determined. These values 
of A* were found to agree with those derived by the present method for the case 
m = 1, but with taken large enough to assure convergence. 

The velocity-fluctuations in the range of parameters explored in figure 2 have 
a distribution across the channel which is close to that in the first eigenfunction 
of the Orr-Sommerfeld equation. This follows from the fact that the amplitude- 
parameter A, as well as A*, is less than l / l O O ,  so that the stream function @ in (2) 
is, by (14)) given approximately by 

1c. v ( lc.o + fo ) + 2 W [fl( y ) eia(ct-r)] 

E +fo) + 2 A 9  [F,,(y) eia(ct-")]. (48) 

Here Flo(y) = &(y) is the first even eigenfunction of the Orr-Sommerfeld equa- 
tion, and 9 denotes the real part. The fluctuating velocities derivable from the 
term in brackets in (48) have therefore a distribution in y derived from $$(y), 
with an external amplitude-factor A. The r.rn.s. of the velocity fluctuations is 
therefore proportional to A, which is within 8% of A*. Incontrast to the fluctuating 
velocity field, the curvature of the mean flow is markedly modified, as discussed 
below. 

The variation of A* with R for constant a is shown in figure 3 for the region 
lying above the branch AB of the neutral curve. In  the region lying above the 
branch BC of the neutral curve the variation of A* with a is very steep, so that 
all the curves up to A* = 0-004 lie very close to and above the neutral curve, and 
cannot be discerned in figure 2. This is exhibited by the steepness of the curves 
shown in figure 4. 
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+ R  

FIGURE 3. Variation of the amplitude parameter A* with R for constant a 
along the DB branch of figure 1. 
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FIGURE 4. Variation of the amplitude parameter A* with a for constant R 
along the BF branch of figure 1. 
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In  the case of periodic disturbances of finite amplitude the mean flow is modified 
by the terms fo and fo appearing in (9). The original velocity profile (1 -y2) is 
changed to (1 - y2 +f,). In the region of the a! - R plane explored in figure 2 this 
change due to thef, term is less than 1-5 yo. The curvature of the velocity profile 
is changed from the value of 2 to (2 -fo). It is known that when the curvature 
changes sign the velocity profile so modified becomes unstable even to infinitesi- 
mal disturbances. In  figure 5 the curvature (2-f,) is plotted for the case of 

-+Y 

FIGURE 5. The curvature of the velocity profile (2-&) for the case 
R = 12,000, & = 1.14, A* = 0.0043, C, = 0.2485. 

R = 12,000, ct = 1.14, A* = 0.0043. It is seen that (2 -fo) is modified up to 40 yo 
in the vicinity of the wall, showing a tendency to become negative as A is increased 
further. The arrow indicates the position where the phase-velocity of the dis- 
turbance c, equals the velocity (1 - y2) in the Poiseuille flow. The minimum 
value of (2 -fo) occurs just to the left of that position, 

It is to be noted that, with increase in the amplitude h of the disturbance, the 
phase velocity increases. The maximum change in the region explored in figure 2 
is about 3 yo. This suggests a qualitative similarity to the Riemann solution for 
acoustic waves of finite amplitude. 

We are indebted to Mr Benjamin Gabai for assistance in programming. This 
investigation was supported by the National Science Foundation (Grant 
GP-8944). 
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